Autophagy modulates apical growth and development in the moss Physcomitrium patens

Author:

Pettinari Georgina,Finello Juan,Rojas Macarena Plaza,Liberatore Franco,Robert Germán,Otaiza-González SantiagoORCID,Velez Pilar,Theumer MartinORCID,Agudelo-Romero PatriciaORCID,Gonzalez Claudio,Lascano RamiroORCID,Saavedra LauraORCID

Abstract

ABSTRACTDifferent to root hairs and pollen tubes, Physcomitrium patens apical growing protonemal cells have the singularity that they continue to undergo cell divisions as the plant develops, allowing to study autophagy in the context of a multicellular apical growing tissue coupled to development. Herein, we showed that the core autophagy machinery is present in the moss P. patens, and deeply characterized the growth and development of wild-type, atg5 and atg7 loss-of-function mutants under optimal and nutrient-deprived conditions. Our results showed that the growth of the different morphological and functional protonemata apical growing cells, chloronema and caulonema, is differentially modulated by this process. These differences depend on the protonema cell type and position along the protonemal filament, and growth condition. As a global plant response, the absence of autophagy triggers the spread of the colony through protonemata growth at the expense of a reduction in buds and gametophore development, and thus the adult gametophytic and reproductive phases. Altogether this study provides valuable information indicating that autophagy has roles during apical growth with differential responses within the cell types of the same tissue and contributes to life cycle progression and thus the development of the 2D and 3D tissues of P. patens.HIGHLIGHTAutophagy is differentially induced in protonemal cells, and contributes to apical growth, life cycle progression, and thus the development of the 2D and 3D tissues of P. patens.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3