Phylogenetic-informed graph deep learning to classify dynamic transmission clusters in infectious disease epidemics

Author:

Sun ChaoyueORCID,Li YanjunORCID,Marini SimoneORCID,Riva AlbertoORCID,Wu Dapeng O.ORCID,Salemi MarcoORCID,Magalis Brittany RifeORCID

Abstract

In the midst of an outbreak, identification of groups of individuals that represent risk for transmission of the pathogen under investigation is critical to public health efforts. Several approaches exist that utilize the evolutionary information from pathogen genomic data derived from infected individuals to distinguish these groups from the background population, comprised of primarily randomly sampled individuals with undetermined epidemiological linkage. These methods are, however, limited in their ability to characterize the dynamics of these groups, or clusters of transmission. Dynamic transmission patterns within these clusters, whether it be the result of changes at the level of the virus (e.g., infectivity) or host (e.g., vaccination implementation), are critical in strategizing public health interventions, particularly when resources are limited. Phylogenetic trees are widely used not only in the detection of transmission clusters, but the topological shape of the branches within can be useful sources of information regarding the dynamics of the represented population. We evaluate the limitation of existing tree shape statistics when dealing with smaller sub-trees containing transmission clusters and offer instead a phylogeny-based deep learning system –DeepDynaTree– for classification of transmission cluster. Comprehensive experiments carried out on a variety of simulated epidemic growth models indicate that this graph deep learning approach is effective in predicting cluster dynamics (balanced accuracy of 0.826 vs. 0.533 and Brier score of 0.234 vs. 0.466 in independent test set). Our deployment model in DeepDynaTree incorporates a primal-dual graph neural network principle using output from phylogenetic-based cluster identification tools (available fromhttps://github.com/salemilab/DeepDynaTree).

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3