An open-source, ready-to-use and validated ripple detector plugin for the Open Ephys GUI

Author:

de Sousa Bruno MonteiroORCID,de Oliveira Eliezyer Fermino,da Silva Beraldo Ikaro Jesus,Polanczyk Rafaela Schuttenberg,Leite João Pereira,Aguiar Cleiton LopesORCID

Abstract

ABSTRACTSharp wave-ripples (SWRs, 100-250 Hz) are oscillatory events extracellularly recorded in the CA1 subfield of the hippocampus during sleep and quiet wakefulness. SWRs are thought to be involved in the dialogue between the hippocampus and cortical regions to promote memory consolidation during sleep and memory-guided decision making. Many studies employed closed-loop strategies to either detect and abolish SWRs within the hippocampus or manipulate other relevant areas upon ripple detection. However, the code and schematics necessary to replicate the detection system are not always available, which hinders the reproducibility of experiments among different research groups. Furthermore, information about performance is not usually reported. Here, we present the development and validation of an open-source, real-time ripple detection plugin integrated into the Open Ephys GUI. It contains a built-in movement detector based on accelerometer or electromyogram data that prevents false ripple events (due to chewing, grooming, or moving, for instance) from triggering the stimulation/manipulation device. To determine the accuracy of the detection algorithm, we first carried out simulations in Matlab with synthetic and real ripple recordings. Using a specific combination of detection parameters (amplitude threshold of 5 standard deviations above the mean, time threshold of 10 ms, and RMS block size of 7 samples), we obtained a 97% true positive rate and 2.48 false positives per minute on the real data. Next, an Open Ephys plugin based on the same detection algorithm was developed, and a closed-loop system was set up to evaluate the round trip (ripple onset-to-stimulation) latency over synthetic data. The lowest latency obtained was 34.5 ± 0.5 ms. Besides contributing to increased reproducibility, we anticipate that the developed ripple detector plugin will be helpful for many closed-loop applications in the field of systems neuroscience.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3