Molecular-Dynamics Simulation Methods for Macromolecular Crystallography

Author:

Wych David C.ORCID,Aoto Phillip C.ORCID,Vu LilyORCID,Wolff Alexander M.ORCID,Mobley David L.ORCID,Fraser James S.ORCID,Taylor Susan S.ORCID,Wall Michael E.ORCID

Abstract

AbstractTo assess the potential benefits of molecular-dynamics (MD) simulations for macromolecular crystallography (MX), we performed room-temperature X-ray diffraction studies of the catalytic subunit of mouse protein kinase A (PKA-C). We then performed crystalline MD simulations of PKA-C, computed simulated electron densities from the water, protein, and ion components of the MD simulations, and carefully compared them to the initial crystal structure. The results led to the development of an MD-MX analysis procedure and several associated methods: 1) density comparison to evaluate consistency between the MD and the initial crystal structure model; 2) water building to generate alternative solvent models; and 3) protein remodeling to improve the crystal structure where interpretation of density is unclear. This procedure produced a revised structure of PKA with a new ordered water model and a modified protein structure. The revisions yield new insights into PKA mechanisms, including: a sensitivity of the His294 conformation to protonation state, with potential consequences for regulation of substrate binding; a remodeling of the Lys217 side chain along with a bound phosphate; an alternative conformation for Lys213 associated with binding to the regulatory subunit; and an alternative conformation for catalytic base Asp166 and nearby waters, suggesting a mechanism of progression of the phosphotransfer reaction via changes in Mg2+ coordination. Based on the benefits seen applying these methods to PKA, we recommend incorporating our MD-MX procedure into MX studies, to decide among ambiguous interpretations of electron density that occur, inevitably, as part of standard model refinement.

Publisher

Cold Spring Harbor Laboratory

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3