TwinEQTL: Ultra Fast and Powerful Association Analysis for eQTL and GWAS in Twin Studies

Author:

Xia KaiORCID,Shabalin Andrey A.,Yin Zhaoyu,Chung WonilORCID,Sullivan Patrick F.,Wright Fred A.,Styner Martin,Gilmore John H.,Santelli Rebecca C.,Zou Fei

Abstract

AbstractWe develop a computationally efficient alternative, TwinEQTL, to a linear mixed-effects model (LMM) for twin genome-wide association study (GWAS) data. Instead of analyzing all twin samples together with LMM, TwinEQTL first splits twin samples into two independent groups on which multiple linear regression analysis can be validly performed separately, followed by an appropriate meta-analysis-like approach to combine the two non-independent test results. Through mathematical derivations, we prove the validity of TwinEQTL algorithm and show that the correlation between two dependent test statistics at each single-nucleotide polymorphism (SNP) are independent of its minor allele frequency (MAF). Thus the correlation is constant across all SNPs. Through simulations, we show empirically that TwinEQTL has well controlled type I error with negligible power loss compared to the gold-standard linear mixed effects models. To accommodate eQTL analysis with twin subjects, we further implement TwinEQTL into a R package with much improved computational efficiency. Our approaches provide a significant leap in terms of computing speed for GWAS and eQTL analysis with twin samples.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3