Abstract
AbstractA pet cockatoo was the suspected source of Cryptococcus neoformans recovered from the cerebral spinal fluid (CSF) of an immunocompromised patient with cryptococcosis based on the molecular analyses available in 2000. Here we report whole genome sequence analysis of the clinical and cockatoo strains. Both are closely related MATα strains belonging to the VNII lineage, confirming that the human infection likely originated from pet bird exposure. The two strains differ by 61 single nucleotide polymorphisms, including 8 nonsynonymous changes involving 7 genes. To ascertain whether changes in these genes are selected during mammalian infection, we passaged the cockatoo strain in mice. Remarkably, isolates obtained from mouse tissue possess a frame-shift mutation in one of the seven genes altered in the human sample, a gene predicted to encode a SWI-SNF chromatin-remodeling complex protein. Both cockatoo and patient strains as well as mouse passaged isolates obtained from brain tissue had a premature stop codon in a homolog of ZFC3, a predicted single-zinc finger containing protein, which is associated with larger capsules when deleted and appears to have reverted to a full-length protein in the mouse passaged isolates obtained from lung tissue. The patient strain and mouse passaged isolates show variability in the expression of virulence factors, with differences in capsule size, melanization, and rates on non-lytic expulsion from macrophages observed. Our results establish that environmental strains undergo genomic and phenotypic changes during mammalian passage, suggesting that animal virulence can be a mechanism for genetic change and that the genomes of clinical isolates may provide a readout of mutations acquired during infection.
Publisher
Cold Spring Harbor Laboratory
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献