Genetic dissection of the pluripotent proteome through multi-omics data integration

Author:

Aydin SelcanORCID,Pham Duy T.,Zhang TianORCID,Keele Gregory R.ORCID,Skelly Daniel A.ORCID,Pankratz MatthewORCID,Choi Ted,Gygi Steven P.ORCID,Reinholdt Laura G.ORCID,Baker Christopher L.ORCID,Churchill Gary A.ORCID,Munger Steven C.ORCID

Abstract

Genetic background is a major driver of phenotypic variability in pluripotent stem cells (PSCs). Most studies of variation in PSCs have relied on transcript abundance as the primary molecular readout of cell state. However, little is known about how proteins, the primary functional units in the cell, vary across genetically diverse PSCs, how protein abundance relates to variation in other cell characteristics, and how genetic background confers these effects. Here we present a comprehensive genetic study characterizing the pluripotent proteome of 190 unique mouse embryonic stem cell lines (mESCs) derived from genetically heterogeneous Diversity Outbred (DO) mice. The quantitative proteome is highly variable across DO mESCs, and we identified differentially activated pluripotency-associated pathways in the proteomics data that were not evident in transcriptome data from the same cell lines. Comparisons of protein abundance to transcript levels and chromatin accessibility show broad co-variation across molecular layers and variable correlation across samples, with some lines showing high and others low correlation between these multi-omics datasets. Integration of these three molecular data types using multi-omics factor analysis revealed shared and unique drivers of quantitative variation in pluripotency-associated pathways. QTL mapping localized the genetic drivers of this quantitative variation to a number of genomic hotspots, and demonstrated that multi-omics data integration consolidates the influence of genetic signals shared across molecular traits to increase QTL detection power and overcome the limitations inherent in mapping individual molecular features. This study reveals transcriptional and post-transcriptional mechanisms and genetic interactions that underlie quantitative variability in the pluripotent proteome, and in so doing provides a regulatory map for mouse ESCs that can provide a rational basis for future mechanistic studies, including studies of human PSCs.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3