Vinculin plays a role in neutrophil stiffening and transit through model capillary segments

Author:

Neumann Brittany M.,Wilson Zachary S.,Auguste Kinga,Roye Yasmin,Shah Manisha K.,Darling Eric M.,Lefort Craig T.ORCID

Abstract

AbstractNeutrophils are rapidly mobilized from the circulation to sites of inflammation. The mechanisms of neutrophil trafficking in the lung are distinct from those in the periphery, in part because the pulmonary capillaries are the primary site of neutrophil emigration rather than postcapillary venules. Since the diameter of a neutrophil is greater than the width of most pulmonary capillary segments, they must deform to transit through this capillary network, even at homeostasis. Resistance to deformation is primarily due to cortical actin that is rapidly assembled when a neutrophil is exposed to a priming or activation stimulus, resulting in neutrophil stiffening and subsequent sequestration within the pulmonary capillary network. In the current study, we use a microfluidic assay to characterize neutrophil transit through model capillary-like channels. Using techniques from single-particle tracking, we analyzed the cumulative distribution of neutrophil transit times and resolve population-based effects. We found that vinculin, an actin-binding adaptor protein, plays an essential role in neutrophil stiffening in response to formyl-Met-Leu-Phe (fMLP). Vinculin-deficient neutrophils lack the development of a population with slow transit through narrow channels that was observed in both wild-type murine bone marrow neutrophils and HoxB8-conditional progenitor-derived neutrophils. Atomic force microscopy studies provide further evidence that vinculin is required for neutrophil stiffening. Consistent with these findings, we observed that neutrophil sequestration in the lungs of mice is attenuated in the absence of vinculin. Together, our studies indicate that vinculin mediates actin-dependent neutrophil stiffening that leads to their sequestration in capillaries.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3