ST6GAL1 sialyltransferase promotes acinar to ductal metaplasia and pancreatic cancer progression

Author:

Chakraborty Asmi,Bhalerao Nikita,Marciel Michael P.,Hwang Jihye,Britain Colleen M.,Eltoum Isam E.,Jones Robert B.,Alexander Katie L.,Smythies Lesley E.,Smith Phillip D.,Crossman David K.,Crowley Michael R.,Shin Boyoung,Harrington Laurie E.,Yan Zhaoqi,Bethea Maigen M.,Hunter Chad S.,Klug Christopher A.,Buchsbaum Donald J.ORCID,Bellis Susan L.

Abstract

AbstractThe role of aberrant glycosylation in pancreatic ductal adenocarcinoma (PDAC) remains an under-investigated area of research. In this study, we determined that the ST6GAL1 sialyltransferase, which adds α2,6-linked sialic acids to N-glycosylated proteins, is upregulated in patients with early-stage PDAC, and further increased in advanced disease. A tumor-promoting function for ST6GAL1 was elucidated using tumor xenograft models with human PDAC cells. Additionally, we developed a genetically-engineered mouse (GEM) with transgenic expression of ST6GAL1 in the pancreas, and found that mice with dual expression of ST6GAL1 and oncogenic KRASG12D have greatly accelerated PDAC progression and mortality compared with mice expressing KRASG12D alone. As ST6GAL1 imparts progenitor-like characteristics, we interrogated ST6GAL1’s role in acinar to ductal metaplasia (ADM), a process that fosters neoplasia by reprogramming acinar cells into ductal, progenitor-like cells. We confirmed that ST6GAL1 promotes ADM using multiple models including the 266-6 cell line, GEM-derived organoids and tissues, and an in vivo model of inflammation-induced ADM. EGFR is a key driver of ADM and is known to be activated by ST6GAL1-mediated sialylation. Importantly, EGFR activation was dramatically increased in acinar cells and organoids from mice with transgenic ST6GAL1 expression. These collective results highlight a novel glycosylation-dependent mechanism involved in early stages of pancreatic neoplasia.

Publisher

Cold Spring Harbor Laboratory

Reference82 articles.

1. Cancer Statistics, 2021

2. Acinar cell plasticity and development of pancreatic ductal adenocarcinoma;Gastroenterol Hepatol,2017

3. Therapeutic potential of targeting acinar cell reprogramming in pancreatic cancer;World J Gastroenterol,2016

4. Ductal metaplasia in pancreas;Biochim Biophys Acta Rev Cancer,2022

5. Genetics and biology of pancreatic ductal adenocarcinoma

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3