Cortical facilitation of somatosensory inputs using gravity-related tactile information in patients with bilateral vestibular loss

Author:

Fabre Marie,Beullier Laura,Sutter Chloé,Krebritchi Amirezza,Chavet Pascale,Simoneau Martin,Toupet Michel,Blouin Jean,Mouchnino Laurence

Abstract

AbstractA few years after their bilateral vestibular loss, individuals usually show a motor repertoire that is almost back to normal. This recovery is thought to involve an up-regulation of the visual and proprioceptive information that compensates for the lack of vestibular information. Here, we investigated whether plantar tactile inputs, which provide body information relative to the ground and to the Earth-vertical, contribute to this compensation. More specifically, we tested the hypothesis that somatosensory cortex response to electric stimulation of the plantar sole in standing adults will be greater in patients (n = 10) with bilateral vestibular loss than in an aged-matched healthy group (n = 10). Showing significant greater somatosensory evoked potentials (i.e., P1N1) in patients than in controls, the electroencephalographic recordings supported this hypothesis. Furthermore, we found evidence that increasing the differential pressure between both feet, by adding a 1 kg mass at each pending wrist, enhanced the internal representation of body orientation and motion relative to a gravitational reference frame. The large decreased in alpha/beta power in the right posterior parietal cortex (and not in the left) is in line with this assumption. Finally, our behavioral analyses showed smaller body sway oscillations for patients, likely originated from a tactile-based control strategy. Conversely, healthy subjects showed smaller head oscillations suggesting a vestibular-based control strategy, the head serving as a reference for balance control.HighlightsSomatosensory cortex excitability is greater in patients with bilateral vestibular loss than in aged-matched healthy individualsTo control balance, healthy individuals “locked” the head while vestibular patients “locked” their pelvisFor vestibular patients, increasing loading/unloading mechanism enhances the internal representation of body state in the posterior parietal cortex

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3