Recurrent neural network model of human event-related potentials in response to intensity oddball stimulation

Author:

O’Reilly Jamie A.ORCID

Abstract

AbstractThe mismatch negativity (MMN) component of the human event-related potential (ERP) is frequently interpreted as a sensory prediction-error signal. However, there is ambiguity concerning the neurophysiology underlying hypothetical prediction and prediction-error signalling components, and whether these can be dissociated from overlapping obligatory components of the ERP that are sensitive to physical properties of sounds. In the present study, a hierarchical recurrent neural network (RNN) was fitted to ERP data from 38 subjects. After training the model to reproduce ERP waveforms evoked by 80 dB standard and 70 dB deviant stimuli, it was used to simulate a response to 90 dB deviant stimuli. Internal states of the RNN effectively combine to generate synthetic ERPs, where individual hidden units are loosely analogous to population-level sources. Model behaviour was characterised using principal component analysis of stimulus condition, layer, and individual unit responses. Hidden units were categorised according to their temporal response fields, and statistically significant differences among stimulus conditions were observed for amplitudes of units peaking in the 0 to 75 ms (P50), 75 to 125 ms (N1), and 250 to 400 ms (N3) latency ranges, surprisingly not including the measurement window of MMN. The model demonstrated opposite polarity changes in MMN amplitude produced by falling (70 dB) and rising (90 dB) intensity deviant stimuli, consistent with loudness dependence of sensory ERP components. Although perhaps less parsimoniously, these observations could be interpreted within the context of predictive coding theory, as examples of negative and positive prediction errors, respectively.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3