Microglial ferroptotic stress causes non-cell autonomous neuronal death

Author:

Liddell Jeffrey R.ORCID,Hilton James B.W.ORCID,Kysenius KaiORCID,Nikseresht SaraORCID,McInnes Lachlan E.,Hare Dominic J.ORCID,Paul BenceORCID,Trist Benjamin G.ORCID,Double Kay L.ORCID,Mercer Stephen W.,Ayton ScottORCID,Roberts Blaine R.ORCID,Beckman Joseph S.ORCID,McLean Catriona A.ORCID,White Anthony R.ORCID,Donnelly Paul S.,Bush Ashley I.ORCID,Crouch Peter J.ORCID

Abstract

AbstractBackgroundFerroptosis is a form of regulated cell death characterised by lipid peroxidation as the terminal endpoint and a requirement for iron. Although it protects against cancer and infection, ferroptosis is also implicated in causing neuronal death in degenerative diseases of the central nervous system (CNS). The precise role for ferroptosis in causing neuronal death is yet to be fully resolved.MethodsTo elucidate the role of ferroptosis in neuronal death we utilised co-culture and conditioned medium transfer experiments involving microglia, astrocytes and neurones. We ratified clinical significance of our cell culture findings via assessment of human CNS tissue from cases of the fatal, paralysing neurodegenerative condition of amyotrophic lateral sclerosis (ALS). Finally, we utilised the SOD1G37R mouse model of ALS and a novel CNS-permeant ferroptosis inhibitor to verify pharmacological significance in vivo.ResultsWe found that sublethal ferroptotic stress selectively affecting microglia triggers an inflammatory cascade that results in non-cell autonomous neuronal death. Central to this cascade is the conversion of astrocytes to a neurotoxic state. We show that spinal cord tissue from cases of ALS exhibits a signature of ferroptosis that encompasses atomic, molecular and biochemical features. Moreover, a molecular correlation between ferroptosis and neurotoxic astrocytes evident in ALS-affected spinal cord is recapitulated in the SOD1G37R mouse model where treatment with the novel, CNS-permeant ferroptosis inhibitor, CuII(atsm), ameliorated these markers and was neuroprotective.ConclusionsBy showing that microglia responding to sublethal ferroptotic stress culminates in non-cell autonomous neuronal death, our results implicate microglial ferroptotic stress as a rectifiable cause of neuronal death in neurodegenerative disease. As ferroptosis is currently primarily regarded as an intrinsic cell death phenomenon, these results introduce an entirely new pathophysiological role for ferroptosis in disease.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Microglial iron trafficking: new player in brain injury;Turkish Journal of Medical Sciences;2022-01-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3