Abstract
Visual perceptual decision-making involves multiple components including visual encoding, attention, accumulation of evidence, and motor execution. Recent research suggests that EEG oscillations can identify the time of encoding and the onset of evidence accumulation during perceptual decision-making. Although scientists show that spatial attention improves participant performance in decision making, little is know about how spatial attention influences the individual cognitive components that gives rise to that improvement in performance. We found evidence in this work that both visual encoding time (VET) before evidence accumulation and other non-decision time process after or during evidence accumulation are influenced by spatial top-down attention, but not evidence accumulation itself. Specifically we used an open-source data set in which participants were informed about the location of a target stimulus in the visual field on some trials during a face-car perceptual decision-making task. Fitting neural drift-diffusion models to response time, accuracy, and single-trial N200 latencies (~ 125 to 225 ms post-stimulus) of EEG allowed us to separate the processes of visual encoding and the decision process from other non-decision time processes such as motor execution. These models were fit in a single step in a hierarchical Bayesian framework. Model selection criteria and comparison to model simulations show that spatial attention manipulates both VET and other non-decision time process. We discuss why spatial attention may affect other non-evidence accumulation processes, such as motor execution time (MET), and why this may seem unexpected given the literature. We make recommendations for future work on this topic.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献