A potent synthetic nanobody with broad-spectrum activity neutralizes SARS-Cov-2 virus and Omicron variant through a unique binding mode

Author:

Zhao Dongping,Liu Liqin,Liu Xinlin,Zhang Jinlei,Yin Yuqing,Luan Linli,Jiang Dingwen,Yang Xiong,Li Lei,Xiong Hualong,Xing Dongming,Zheng Qingbing,Xia NingshaoORCID,Tao Yuyong,Li Shaowei,Huang Haiming

Abstract

AbstractThe major challenge to control COVID pandemic is the rapid mutation rate of the SARS-Cov-2 virus, leading to the escape of the protection of vaccines and most of the neutralizing antibodies to date. Thus, it is essential to develop neutralizing antibodies with broad-spectrum activity targeting multiple SARS-Cov-2 variants. Here, we reported a synthetic nanobody (named C5G2) obtianed by phage display and subsequent antibody engineering. C5G2 has a single digit nanomolar binding affinity to RBD domain and inhibits its binding to ACE2 with an IC50 of 3.7 nM. Pseudovirus assay indicated that the monovalent C5G2 could protect the cells from the infection of SARS-Cov-2 wild type virus and most of the virus of concern, i.e. Alpha, Beta, Gamma and Omicron variants. Strikingly, C5G2 has the highest potency against Omicron among all the variants with the IC50 of 4.9ng/mL. The Cryo-EM structure of C5G2 in complex with the Spike trimer showed that C5G2 bind to RBD mainly through its CDR3 at a conserved region that not overlapping with the ACE2 binding surface. Additionally, C5G2 bind simultaneously to the neighboring NTD domain of spike trimer through the same CDR3 loop, which may further increase its potency against the virus infection. Third, the steric hindrance caused by FR2 of C5G2 could inhibit the binding of ACE2 to RBD as well. Thus, this triple-function nanobody may be served as an effective drug for the prophylaxis and therapy against Omicron as well as future variants.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3