Rapid microglial phenotype changes modulate neuronal networks and sharp wave-ripple activity in acute slice preparations

Author:

Berki PéterORCID,Cserép CsabaORCID,Pósfai BalázsORCID,Szabadits EszterORCID,Környei ZsuzsannaORCID,Kellermayer AnnaORCID,Nyerges MiklósORCID,Gulyás Attila I.ORCID,Dénes ÁdámORCID

Abstract

AbstractMicroglia, the main immune cells of the central nervous system (CNS) have long been known for their remarkable sensitivity to tissue disturbance or injury, but its implications to the interpretation of results fromex vivomodels of the CNS have remained largely unclear to date. To this end, we have followed the course of microglial phenotype changes and contribution to neuronal network organisation and functioning in acute brain slices prepared from mice, widely used to study the physiology of the brain from nanoscale events to complex circuits. We found that upon acute slice preparation, microglial cell bodies dislocate and migrate towards the surface of slices, alongside with rapidly progressing morphological changes and altered interactions with neurons. This is accompanied by gradual depolarization and downregulation of P2Y12 receptors, which are instrumental for microglia-neuron communication. Quantitative post-embedding immunofluorescent labelling reveals time-dependent increase in the number of excitatory and inhibitory synapses upon slice preparation in the cerebral cortex, which are markedly influenced by microglia. In line with this, the absence of microglia diminishes the incidence, amplitude and frequency of sharp wave-ripple activity in hippocampal slices. Collectively, our data suggest that microglia are not only inherent modulators of complex neuronal networks, but their specific actions on network reorganisation and functioning must be taken into account when learning lessons fromex vivomodels of the CNS.

Publisher

Cold Spring Harbor Laboratory

Reference88 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3