Expression of cell-wall related genes is highly variable and correlates with sepal morphology

Author:

Hartasánchez Diego A.,Kiss Annamaria,Battu Virginie,Soraru Charline,Delgado-Vaquera Abigail,Massinon Florian,Brasó-Vives Marina,Mollier Corentin,Martin-Magniette Marie-Laure,Boudaoud ArezkiORCID,Monéger Françoise

Abstract

AbstractControl of organ morphology is a fundamental feature of living organisms. There is, however, observable variation in organ size and shape within a given genotype. Taking the sepal of Arabidopsis as a model, we investigated whether we can use variability of gene expression alongside variability of organ morphology to identify gene regulatory networks potentially involved in organ size and shape determination. To address this question, we produced a dataset composed of both transcriptomic and morphological information obtained from 27 individual sepals from wild-type plants. Although nearly identical in their genetic background, environment, and developmental stage, these sepals exhibited appreciable variability in both morphology and transcriptome. We found the expression of genes involved in response to stimulus and cell-wall to be highly variable among our samples. We additionally identified five modules of co-expressed genes which correlated significantly with morphology, revealing biologically relevant gene regulatory networks. Interestingly, cell-wall related genes were overrepresented in two of the top three modules. Overall, our work highlights the benefit of using coupled variation in gene expression and phenotype in wild-type plants to shed light on the mechanisms underlying organ size and shape determination. Although causality between gene expression and sepal morphology has not been established, our approach opens the way to informed analysis for mutant characterization and functional studies.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3