Abstract
AbstractSurface waters present a unique challenge for the monitoring of critically important antimicrobial resistance. Metagenomic approaches provide unbiased descriptions of taxonomy and antimicrobial resistance genes in many environments, but for surface water, culture independent data is insufficient to describe critically important resistance. To address this challenge and expand resistome reporting capacity of antimicrobial resistance in surface waters, we apply metagenomic and quasimetagenomic (enriched microbiome) data to examine and contrast water from two sites, a creek near a hospital, and a reservoir used for recreation and municipal water. Approximately 30% of the National Antimicrobial Resistance Monitoring System’s critically important resistance gene targets were identified in enriched data contrasted to only 1% in culture independent data. Four different analytical approaches consistently reported substantially more antimicrobial resistance genes in quasimetagenomic data compared to culture independent data across most classes of antimicrobial resistance. Statistically significant differential fold changes (p<0.05) of resistance determinants were used to infer microbiological differences in the waters. Important pathogens associated with critical antimicrobial resistance were described for each water source. While the single time-point for only two sites represents a small pilot project, the successful reporting of critically important resistance determinants is proof of concept that the quasimetagenomic approach is robust and can be expanded to multiple sites and timepoints for national and global monitoring and surveillance of antimicrobial resistance in surface waters.
Publisher
Cold Spring Harbor Laboratory
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献