Genomic profiling of climate adaptation in Aedes aegypti along an altitudinal gradient in Nepal indicates non-gradual expansion of the disease vector

Author:

Kramer Isabelle MarieORCID,Pfenninger MarkusORCID,Feldmeyer Barbara,Dhimal Meghnath,Gautam Ishan,Shreshta Pramod,Baral Sunita,Phuyal Parbati,Hartke Juliane,Magdeburg Axel,Groneberg David A.,Ahrens Bodo,Müller Ruth,Waldvogel Ann-Marie

Abstract

AbstractBackgroundDriven by globalization, urbanization and climate change, the distribution range of invasive vector species has expanded to previously colder ecoregions. To reduce health-threatening impacts on humans, insect vectors are extensively studied. Population genomics can reveal the genomic basis of adaptation and help to identify emerging trends of vector expansion.ResultsBy applying whole genome analyses and genotype-environment associations to populations of the main dengue vector Ae. aegypti, sampled along an altitudinal temperature gradient in Nepal (200- 1300m), we identify adaptive traits and describe the species’ genomic footprint of climate adaptation to colder ecoregions. We found two clusters of differentiation with significantly different allele frequencies in genes associated to climate adaptation between the highland population (1300m) and all other lowland populations (≤ 800 m). We revealed non-synonymous mutations in 13 of the candidate genes associated to either altitude, precipitation or cold tolerance and identified an isolation-by-environment differentiation pattern.ConclusionOther than the expected gradual differentiation along the altitudinal gradient, our results reveal a distinct genomic differentiation of the highland population. This finding either indicates a differential invasion history to Nepal or local high-altitude adaptation explaining the population’s phenotypic cold tolerance. In any case, this highland population can be assumed to carry pre-adapted alleles relevant for the species’ invasion into colder ecoregions worldwide that way expanding their climate niche.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3