In macrophages fatty acid oxidation spares glutamate for use in diverse metabolic pathways required for alternative activation

Author:

van Teijlingen Bakker Nikki,Flachsman Lea,Carrizo Gustavo E.,Sanin David E.,Lawless Simon,Castoldi Angela,Monteiro Lauar,Kabat Agnieszka M.,Matsushita Mai,Haessler Fabian,Patterson Annette,Geltink Ramon Klein,O’Sullivan David,Pearce Erika L.,Pearce Edward J.

Abstract

AbstractFatty acid oxidation (FAO) is upregulated in IL-4-stimulated (alternatively activated) macrophages (M(IL-4)). We examined the effect of loss of function of the enzyme Cpt1a, which facilitates the entry of long chain fatty acids (FA) into mitochondria for FAO, on alternative activation. Expression of M(IL-4) markers ARG1, CD301 and RELMα, was impaired in tamoxifen-treated ERT2Cre x Cpt1afl/fl macrophages and in macrophages expressing shRNA targeting Cpt1a (Cpt1a-shRNA). In contrast, VaviCre x Cpt1afl/fl and LysmCre x Cpt1afl/fl M(IL-4) responded normally to IL-4. Reduced alternative activation due to Cpt1a loss of function was linked to decreased cellular pools of α-ketoglutarate, glutamate, and glutathione, diminished commitment of glucose carbon to serine/glycine synthesis, and decreased expression of genes in the Nrf2-oxidative stress response pathway. Consistent with this, reactive oxygen species were increased. Restoration of glutathione pools with N-acetyl cysteine normalized oxidative stress and allowed alternative activation in the face of Cpt1a-deficiency, pointing to a role for FAO in the control of ROS and as being important for alternative activation. In VaviCre x Cpt1afl/fl M(IL-4), glutamine uptake was increased, compensating for the loss of FAO to meet necessary metabolic demands, to allow alternative activation. The data indicate that macrophages are able to regulate glutamine metabolism to compensate for chronic disruption of FAO to meet metabolic needs.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3