Information theory characteristics improve the prediction of lithium response in bipolar disorder patients using an SVM classifier

Author:

Tripathi UtkarshORCID,Mizrahi Liron,Alda MartinORCID,Falkovich GregoryORCID,Stern ShaniORCID

Abstract

AbstractBipolar disorder (BD) is a mood disorder with a high morbidity and death rate. Lithium (Li), a prominent mood stabilizer, is fully effective in roughly 30% of BD patients. The remaining patients respond partially or do not respond at all. Another drug used to treat BD patients is valproate (VPA). Plenty of efforts has been made to understand how these drugs affect the patients’ neurons. We have performed electrophysiological recordings in patient-derived dentate gyrus (DG) granule neurons for three groups: control individuals, BD patients who respond to Li treatment (LR), and BD patients who do not respond to Li treatment (NR). The recordings were analyzed by the statistical tools of modern information theory, which enabled us to recognize new relationships between the electrophysiological features. These added features included the entropy of several electrophysiological measurements and the mutual information between different types of electrophysiological measurements. Information theory features provided further knowledge about the distribution of the electrophysiological entities, which improved basic classification schemes. These newly added features enabled a significant improvement in our ability to distinguish the BD patients from the control individuals (an improvement from 60% accuracy to 74% accuracy) and the Li responders from the non-responders in the BD population using Support Vector Machine (SVM) classification algorithms (an improvement from 81% accuracy to 99% accuracy). These new tools showed that LR neurons are less distinguishable from control neurons after Li treatment but not after VPA treatment, whereas NR neurons become more distinguishable from control neurons after Li treatment.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3