Secondary metabolites produced during Aspergillus fumigatus and Pseudomonas aeruginosa biofilm formation

Author:

Bastos Rafael Wesley,Akiyama Daniel,Fernanda dos Reis Thaila,Colabardini Ana Cristina,Luperini Rafael Sanchez,Alves de Castro Patrícia,Baldini Regina LúciaORCID,Fill Taícia,Goldman Gustavo H.ORCID

Abstract

AbstractIn Cystic Fibrosis (CF), mucus plaques are formed in the patient’s lung, creating a hypoxic condition and a propitious environment for colonization and persistence of many microorganisms. There is clinical evidence showing that Aspergillus fumigatus can co-colonize CF patients with Pseudomonas aeruginosa, which has been associated with lung function decline. P. aeruginosa produces several compounds with inhibitory and anti-biofilm effects against A. fumigatus in vitro; however, little is known about the fungal compounds produced in counterattack. Here, we annotated fungal and bacterial secondary metabolites (SM) produced in mixed biofilms in normoxia and hypoxia conditions. We detected nine SMs produced by P. aeruginosa. Phenazines and different analogs of pyoverdin were the main compounds produced by P. aeruginosa, and their secretion were increased by the fungal presence. The roles of the two operons responsible for phenazines production (phzA1 and phzA2) were also investigated showing both mutants are able to produce partial sets of phenazines. We detected a total of 20 SMs secreted by A. fumigatus either in monoculture or in co-culture with P. aeruginosa. All these compounds are secreted during biofilm formation either in normoxia or hypoxia. However, only eight compounds (demethoxyfumitremorgin C, fumitremorgin, ferrichrome, ferricrocin, tricetylfusigen, gliotoxin, gliotoxin E, and pyripyropene A) were detected during the biofilm formation by the co-culture of A. fumigatus and P. aeruginosa upon both normoxia and hypoxia conditions. Overall, we showed how diverse is SM secretion during A. fumigatus and P. aeruginosa mixed culture and how this can affect biofilm formation both in normoxia and hypoxia.Author SummaryThe interaction between Pseudomonas aeruginosa and Aspergillus fumigatus has been well-characterized in vitro. In this scenario, the bacterium exerts a strong inhibitory effect against the fungus. However, little is known about the metabolites produced by the fungus to counterattack the bacteria. Our work aimed to annotate secondary metabolites (SM) secreted during co-culture between P. aeruginosa and A. fumigatus during biofilm formation in both normoxia and hypoxia. The bacterium produces several different types of phenazines and pyoverdins, in response to the fungus presence. In contrast, we were able to annotate 29 metabolites produced during A. fumigatus biofilm formation but only eight compounds were detected during biofilm formation by the co-culture of A. fumigatus and P. aeruginosa upon both normoxia and hypoxia. In conclusion, we have detected many SMs secreted during A. fumigatus and P. aeruginosa biofilm formation. This analysis can provide several opportunities to understand the interaction between these two species.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3