Lowered oxygen saturation and increased body temperature in acute COVID-19 largely predict chronic fatigue syndrome and affective symptoms due to LONG COVID: a precision nomothetic approach

Author:

Al-Hadrawi Dhurgham Shihab,Al-Rubaye Haneen Tahseen,Almulla Abbas F.ORCID,Al-Hakeim Hussein KadhemORCID,Maes MichaelORCID

Abstract

AbstractBackgroundLong coronavirus disease 2019 (LC) is a chronic sequel of acute COVID-19. The exact pathophysiology of the affective, chronic fatigue and physiosomatic symptoms (labeled as “physio-affective phenome”) of LC has remained elusive.ObjectiveThe current study aims to delineate the effects of oxygen saturation (SpO2) and body temperature during the acute phase on the physio-affective phenome of LC.MethodWe recruited 120 LC patients and 36 controls. For all participants, we assessed the lowest SpO2 and peak body temperature during acute COVID-19, and the Hamilton Depression and Anxiety Rating Scale (HAMD/HAMA) and Fibro Fatigue (FF) scales 3 to 4 months later.ResultsLowered SpO2 and increased body temperature during the acute phase and female sex predict 60.7% of the variance in the physio-affective phenome of LC. Using unsupervised learning techniques we were able to delineate a new endophenotype class, which comprises around 26.7% of the LC patients and is characterized by very low SpO2 and very high body temperature, and depression, anxiety, chronic fatigue, and autonomic and gastro-intestinal symptoms scores. Single latent vectors could be extracted from both biomarkers, depression, anxiety and FF symptoms or from both biomarkers, insomnia, chronic fatigue, gastro-intestinal and autonomic symptoms.ConclusionThe newly constructed endophenotype class and pathway phenotypes indicate that the physio-affective phenome of LC is at least in part the consequence of the pathophysiology of acute COVID-19, namely the combined effects of lowered SpO2, increased body temperature and the associated immune-inflammatory processes and lung lesions.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3