Learning inverse folding from millions of predicted structures

Author:

Hsu ChloeORCID,Verkuil Robert,Liu Jason,Lin Zeming,Hie BrianORCID,Sercu TomORCID,Lerer AdamORCID,Rives AlexanderORCID

Abstract

AbstractWe consider the problem of predicting a protein sequence from its backbone atom coordinates. Machine learning approaches to this problem to date have been limited by the number of available experimentally determined protein structures. We augment training data by nearly three orders of magnitude by predicting structures for 12M protein sequences using AlphaFold2. Trained with this additional data, a sequence-to-sequence transformer with invariant geometric input processing layers achieves 51% native sequence recovery on structurally held-out backbones with 72% recovery for buried residues, an overall improvement of almost 10 percentage points over existing methods. The model generalizes to a variety of more complex tasks including design of protein complexes, partially masked structures, binding interfaces, and multiple states.

Publisher

Cold Spring Harbor Laboratory

Reference82 articles.

1. The rosetta all-atom energy function for macromolecular modeling and design;Journal of chemical theory and computation,2017

2. Unified rational protein engineering with sequence-based deep representation learning;Nature methods,2019

3. Anand, N. and Achim, T. Protein structure and sequence generation with equivariant denoising diffusion probabilistic models, 2022.

4. Anand, N. and Huang, P. Generative modeling for protein structures. Advances in neural information processing systems, 31, 2018.

5. Anand-Achim, N. , Eguchi, R. R. , Mathews, I. I. , Perez, C. P. , Derry, A. , Altman, R. B. , and Huang, P.-S. Protein sequence design with a learned potential. Biorxiv, pp. 2020–01, 2021.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3