Macrophages undergo necroptosis during severe influenza A infection and contribute to virus-associated cytokine storm

Author:

Ferreira André C.,Sacramento Carolina Q.ORCID,Pereira-Dutra Filipe S.ORCID,Fintelman-Rodrigues Natália,Silva Priscila P.,Mattos Mayara,de Freitas Caroline S.,Marttorelli Andressa,de Melo Gabrielle R.,Macedo Mariana C.,Azevedo-Quintanilha Isaclaudia G.,Carlos Aluana S.,Emídio João Vitor,Garcia Cristiana C.,Bozza Patrícia T.,Bozza Fernando A.ORCID,Souza Thiago M. L.ORCID

Abstract

AbstractInfluenza A virus (IAV) causes a major public health concern, because it is one of the leading causes of respiratory tract infections and hospitalization. Severe influenza has been associated with the cytokine storm, and IAV productive infection cell death in airway epithelial cells may contribute to the exacerbation of this proinflammatory event. On the other hand, IAV replication in macrophages is non-permissive and whether this immune cell may contribute to severe influenza physiopathology requires more details. Here, we investigated IAV-induced macrophage death, along with potential therapeutic intervention. We found that IAV or simply its surface glycoprotein hemagglutinin (HA) triggers necroptosis in human and murine macrophages in a Toll-like receptor-4 (TLR4) and TNF-dependent manner. Anti-TNF treatment, with the clinically approved drug etanercept, prevented the engagement of the necroptotic loop and mice mortality. impaired IAV-induced pro-inflammatory cytokine storm and lung injury. Our results implicate macrophage necroptosis with severe influenza in experimental models and potentially repurpose a clinically available therapy.Author SummaryVarious fates of cell death have an integral role in the influenza A virus (IAV) pathogenesis and lung/respiratory dysfunction. IAV physiopathology is not restricted to airway epithelial cells, where this virus actively replicated. Macrophages should support both viral clearance and priming of adaptative immune response in patients that adequately control influenza. However, during severe IAV infection, macrophages – which are unable to support a permissive viral replication - undergo disruptive cell death and contribute to the exacerbated production of proinflammatory cytokines/chemokines. We characterized this process by showing that IAV or just its surface glycoprotein hemagglutinin (HA) trigger necroptosis, a disruptive and TNF-dependent cells death. Since TNF is a hallmark of pro-inflammatory cell death, we blocked this mediator with a repurposed biomedicine etanercept, which prevented the severe IAV infection in the experimental model. The present work improves the knowledge of influenza pathophysiology by highlighting the importance of macrophage cell death during severe infection.

Publisher

Cold Spring Harbor Laboratory

Reference48 articles.

1. Some Problems of Modern Influenza Prophylaxis with Live Vaccine

2. Pandemic Preparedness and Response — Lessons from the H1N1 Influenza of 2009

3. Influenza

4. World Health Organization. Global influenza strategy 2019-2030. World Health Organization , editor. World Health Organization. Geneva: World Health Organization; 2019. Available: https://apps.who.int/iris/handle/10665/311184.

5. Estimates of global seasonal influenza-associated respiratory mortality: a modelling study

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3