Identification of Antimalarial Compounds that Inhibit Apicomplexan AP2 Proteins in the Human Malaria Parasite Plasmodium falciparum

Author:

Russell TimothyORCID,De Silva Erandi K.,Crowley ValerieORCID,Shaw-Saliba Kathryn,Dube Namita,Josling Gabrielle,Pasaje Charisse Flerida A.ORCID,Kouskoumvekaki Irene,Panagiotou Gianni,Niles Jacquin C.ORCID,Jacobs-Lorena MarceloORCID,Okafor C. Denise,Gamo Francisco-Javier,Llinás ManuelORCID

Abstract

AbstractPlasmodium parasites are reliant on the Apicomplexan AP2 (ApiAP2) transcription factor family to regulate gene expression programs. AP2 DNA binding domains have no homologs in the human or mosquito host genomes, making them potential antimalarial drug targets. Using an in-silico screen to dock thousands of small molecules into the crystal structure of the AP2-EXP (Pf3D7_1466400) AP2 domain (PDB:3IGM), we identified compounds that interact with this domain. Four compounds were found to compete for DNA binding with AP2-EXP and at least one additional ApiAP2 protein. Our top ApiAP2 competitor compound perturbs the transcriptome of P. falciparum trophozoites and results in a decrease in abundance of log2 fold change > 2 for 50% (46/93) of AP2-EXP target genes. Additionally, two ApiAP2 competitor compounds have multi-stage anti-Plasmodium activity against blood and mosquito stage parasites. In summary, we describe a novel set of antimalarial compounds that are targeted against the ApiAP2 family of proteins. These compounds may be used for future chemical genetic interrogation of ApiAP2 proteins or serve as starting points for a new class of antimalarial therapeutics.Author SummaryPlasmodium parasites are the causative agent of malaria, which resulted in over 600,000 deaths in 2021. Due to resistance arising for every antimalarial therapeutic deployed to date, new drug targets and druggable pathways must be explored. To address this concern, we used a molecular docking screen to predict competitors of DNA binding by the parasite specific family of Apicomplexan AP2 (ApiAP2) transcription factor proteins for testing in vitro and in vivo. We find that ApiAP2 competing compounds have antimalarial activity consistent with the disruption of gene regulation. This work will further our understanding of both the biological role and targetability of parasite transcriptional regulation.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3