Abstract
AbstractLarge programs of dynamic gene expression, like cell cyles and circadian rhythms, are controlled by a relatively small “core” network of transcription factors and post-translational modifiers, working in concerted mutual regulation. Recent work suggests that system-independent, quantitative features of the dynamics of gene expression can be used to identify core regulators. We introduce an approach of iterative network hypothesis reduction from time-series data in which increasingly complex features of the dynamic expression of individual, pairs, and entire collections of genes are used to infer functional network models that can produce the observed transcriptional program. The culmination of our work is a computational pipeline, Iterative Network Hypothesis Reduction from Temporal Dynamics (Inherent Dynamics Pipeline), that provides a priority listing of targets for genetic perturbation to experimentally infer network structure. We demonstrate the capability of this integrated computational pipeline on synthetic and yeast cell-cycle data.Author SummaryIn this work we discuss a method for identifying promising experimental targets for genetic network inference by leveraging different features of time series gene expression data along a chained set of previously published software tools. We aim to locate small networks that control oscillations in the genome-wide expression profile in biological functions such as the circadian rhythm and the cell cycle. We infer the most promising targets for further experimentation, emphasizing that modeling and experimentation are an∗Corresponding author: breschine.cummins@montana.edu essential feedback loop for confident predictions of core network structure. Our major offering is the reduction of experimental time and expense by providing targeted guidance from computational methods for the inference of oscillating core networks, particularly in novel organisms.
Publisher
Cold Spring Harbor Laboratory