A Fast, Provably Accurate Approximation Algorithm for Sparse Principal Component Analysis Reveals Human Genetic Variation Across the World

Author:

Chowdhury Agniva,Bose Aritra,Zhou SamsonORCID,Woodruff David P.,Drineas Petros

Abstract

AbstractPrincipal component analysis (PCA) is a widely used dimensionality reduction technique in machine learning and multivariate statistics. To improve the interpretability of PCA, various approaches to obtain sparse principal direction loadings have been proposed, which are termed Sparse Principal Component Analysis (SPCA). In this paper, we present ThreSPCA, a provably accurate algorithm based on thresholding the Singular Value Decomposition for the SPCA problem, without imposing any restrictive assumptions on the input covariance matrix. Our thresholding algorithm is conceptually simple; much faster than current state-of-the-art; and performs well in practice. When applied to genotype data from the 1000 Genomes Project, ThreSPCA is faster than previous benchmarks, at least as accurate, and leads to a set of interpretable biomarkers, revealing genetic diversity across the world.

Publisher

Cold Spring Harbor Laboratory

Reference43 articles.

1. CUR matrix decompositions for improved data analysis

2. A Direct Formulation for Sparse PCA using Semidefinite Programming;SIAM Review,2007

3. Papailiopoulos, D. , Dimakis, A. & Korokythakis, S. Sparse PCA through Low-rank Approximations. In Proceedings of the 30th International Conference on Machine Learning, 747–755 (2013). 1, 3

4. Moghaddam, B. , Weiss, Y. & Avidan, S. Generalized Spectral Bounds for Sparse LDA. In Proceedings of the 23rd International Conference on Machine learning, 641–648 (2006). 2, 3

5. Population structure and eigenanalysis;PLoS genetics,2006

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3