Chaotic dynamics in spatially distributed neuronal networks generate population-wide shared variability

Author:

Mosheiff Noga,Ermentrout Bard,Huang Chengcheng

Abstract

AbstractNeural activity in the cortex is highly variable in response to repeated stimuli. Population recordings across the cortex demonstrate that the variability of neuronal responses is shared among large groups of neurons and concentrates in a low dimensional space. However, the source of the populationwide shared variability is unknown. In this work, we analyzed the dynamical regimes of spatially distributed networks of excitatory and inhibitory neurons. We found chaotic spatiotemporal dynamics in networks with similar excitatory and inhibitory projection widths, an anatomical feature of the cortex. The chaotic solutions contain broadband frequency power in rate variability and have distancedependent and low-dimensional correlations, in agreement with experimental findings. In addition, rate chaos can be induced by globally correlated noisy inputs. These results suggest that spatiotemporal chaos in cortical networks can explain the shared variability observed in neuronal population responses.

Publisher

Cold Spring Harbor Laboratory

Reference69 articles.

1. Pattern formation in oscillatory media without lateral inhibition;Physical Review E,2016

2. Dynamics of Ongoing Activity: Explanation of the Large Variability in Evoked Cortical Responses

3. Avitabile, D. , Numerical computation of coherent structures in spatially-extended systems. In Second International Conference on Mathematical Neuroscience, Antibes Juan-les-Pins (2016).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3