High-Dimensional Multinomial Multiclass Severity Scoring of COVID-19 Pneumonia Using CT Radiomics Features and Machine Learning Algorithms

Author:

Shiri IsaacORCID,Mostafaei Shayan,Avval Atlas Haddadi,Salimi Yazdan,Sanaat Amirhossein,Akhavanallaf Azadeh,Arabi Hossein,Rahmim ArmanORCID,Zaidi HabibORCID

Abstract

AbstractWe aimed to construct a prediction model based on computed tomography (CT) radiomics features to classify COVID-19 patients into severe-, moderate-, mild-, and non-pneumonic. A total of 1110 patients were studied from a publicly available dataset with 4-class severity scoring performed by a radiologist (based on CT images and clinical features). CT scans were preprocessed with bin discretization and resized, followed by segmentation of the entire lung and extraction of radiomics features. We utilized two feature selection algorithms, namely Bagging Random Forest (BRF) and Multivariate Adaptive Regression Splines (MARS), each coupled to a classifier, namely multinomial logistic regression (MLR), to construct multiclass classification models. Subsequently, 10-fold cross-validation with bootstrapping (n=1000) was performed to validate the classification results. The performance of multi-class models was assessed using precision, recall, F1-score, and accuracy based on the 4×4 confusion matrices. In addition, the areas under the receiver operating characteristic (ROC) curve (AUCs) for multi-class classifications were calculated and compared for both models using “multiROC” and “pROC” R packages. Using BRF, 19 radiomics features were selected, 9 from first-order, 6 from GLCM, 1 from GLDM, 1 from shape, 1 from NGTDM, and 1 from GLSZM radiomics features. Ten features were selected using the MARS algorithm, namely 2 from first-order, 1 from GLDM, 2 from GLRLM, 2 from GLSZM, and 3 from GLCM features. The Mean Absolute Deviation and Median from first-order, Small Area Emphasis from GLSZM, and Correlation from GLCM features were selected by both BRF and MARS algorithms. Except for the Inverse Variance feature from GLCM, all selected features by BRF or MARS were significantly associated with four-class outcomes as assessed within MLR (All p-values<0.05). BRF+MLR and MARS+MLR resulted in pseudo-R2 prediction performances of 0.295 and 0.256, respectively. Meanwhile, there were no significant differences between the feature selection models when using a likelihood ratio test (p-value =0.319). Based on confusion matrices for BRF+MLR and MARS+MLR algorithms, the precision was 0.861 and 0.825, the recall was 0.844 and 0.793, whereas the accuracy was 0.933 and 0.922, respectively. AUCs (95% CI)) for multi-class classification were 0.823 (0.795-0.852) and 0.816 (0.788-0.844) for BRF+MLR and MARS+MLR algorithms, respectively. Our models based on the utilization of radiomics features, coupled with machine learning, were able to accurately classify patients according to the severity of pneumonia, thus highlighting the potential of this emerging paradigm in the prognostication and management of COVID-19 patients.

Publisher

Cold Spring Harbor Laboratory

Reference57 articles.

1. A systematic review and meta-analysis of published research data on COVID-19 infection fatality rates;Int J Infect Dis,2020

2. Cascella, M. , Rajnik, M. , Cuomo, A. , Dulebohn, S.C. & Di Napoli, R. Features, Evaluation, and Treatment of Coronavirus. in StatPearls (StatPearls Publishing Copyright © 2020, StatPearls Publishing LLC., Treasure Island (FL), 2020).

3. Corman, V.M. , et al. Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Euro surveillance : bulletin Europeen sur les maladies transmissibles = European communicable disease bulletin 25(2020).

4. Testing for SARS-CoV-2 (COVID-19): a systematic review and clinical guide to molecular and serological in-vitro diagnostic assays

5. CT Scans: Balancing Health Risks and Medical Benefits

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3