Framework for prioritizing variants of unknown significance from clinical genetic testing in kidney disease – utility of multidisciplinary approach to gather evidence of pathogenicity for Hepatocyte Nuclear Factor-1β (HNF1B) p.Arg303His

Author:

Mirshahi Uyenlinh L.ORCID,Bhan Ahana,Tholen Lotte E.,Fang Brian,Chen Guoli,Moore Bryn,Cook Adam,Mohan Prince,Patel Kashyap,Igarashi Peter,de Baaij Jeroen H.F.,Ferrè Silvia,Hoenderop Joost G.J.,Carey David J.,Chang Alexander R.

Abstract

AbstractMonogenic causes in over 300 kidney-associated genes account for roughly 12% of end stage kidney disease (ESKD) cases. Advances in next generation sequencing, and large customized panels enable the diagnosis of monogenic kidney disease noninvasively at relatively low cost, allowing for more precise management for patients and their families. A major challenge is interpreting rare variants, many of which are classified as variants of unknown significance (VUS). We present a framework in which we thoroughly evaluated and provided evidence of pathogenicity for HNF1B-p.Arg303His, a VUS returned from clinical genetic testing for a kidney transplant candidate. This blueprint, designed by a multi-disciplinary team of clinicians, molecular biologists, and diagnostic geneticists, includes using a health system-based cohort with genetic and clinical information to perform deep phenotyping of VUS carriers, examination of existing genetic databases, as well as functional testing. With our approach, we demonstrate evidence for pathogenicity for HNF1B-p.Arg303His by showing similar burden of kidney manifestations in this variant to known HNF1B pathogenic variants, and greater burden compared to non-carriers. Determination of a molecular diagnosis for the example family allows for proper surveillance and management of HNF1B-related manifestations such as kidney disease, diabetes, and hypomagnesemia with important implications for safe living-related kidney donation. The candidate gene-variant pair also allows for clinical biomarker testing for aberrations of linked pathways. This working model may be applicable other diseases of genetic etiology.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3