Chromosome-level genome assembly for the Aldabra giant tortoise enables insights into the genetic health of a threatened population

Author:

Çilingir F.G.ORCID,A’Bear L.,Hansen D.,Davis L.R.,Bunbury N.,Ozgul A.,Croll D.ORCID,Grossen C.

Abstract

AbstractThe Aldabra giant tortoise (Aldabrachelys gigantea) is one of only two giant tortoise species left in the world. The species is endemic to Aldabra Atoll in Seychelles and is considered vulnerable due to its limited distribution and threats posed by climate change. Genomic resources for A. gigantea are lacking, hampering conservation efforts focused on both wild and ex-situ populations. A high-quality genome would also open avenues to investigate the genetic basis of the exceptionally long lifespan. Here, we produced the first chromosome-level de novo genome assembly of A. gigantea using PacBio High-Fidelity sequencing and high-throughput chromosome conformation capture (Hi-C). We produced a 2.37 Gbp assembly with a scaffold N50 of 148.6 Mbp and a resolution into 26 chromosomes. RNAseq-assisted gene model prediction identified 23,953 protein-coding genes and 1.1 Gbp of repetitive sequences. Synteny analyses among turtle genomes revealed high levels of chromosomal collinearity even among distantly related taxa. We also performed a low-coverage re-sequencing of 30 individuals from wild populations and two zoo individuals. Our genome-wide population structure analyses detected genetic population structure in the wild and identified the most likely origin of the zoo-housed individuals. The high-quality chromosome-level reference genome for A. gigantea is one of the most complete turtle genomes available. It is a powerful tool to assess the population structure in the wild population and reveal the geographic origins of ex-situ individuals relevant for genetic diversity management and rewilding efforts.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3