Modeling Transient Brain Coactivity Patterns in Latent Space with FMRI Data

Author:

Li Kaiming,Hu Xiaoping

Abstract

AbstractThe brain is a complex dynamic system that constantly evolves. Characterization of the spatiotemporal dynamics of brain activity is fundamental to understanding how brain works. Current studies with functional connectivity and linear models are limited by low temporal resolution and insufficient model capacity. With a generative variational auto encoder (VAE), the present study mapped the high-dimensional transient co-activity patterns (CAPs) of functional magnetic resonance imaging data to a low-dimensional latent representation that followed a multivariate gaussian distribution. We demonstrated with multiple datasets that the VAE model could effectively represent the transient CAPs in the latent space. Transient CAPs from high-intensity and low-intensity values reflected the same functional structure of brain and could be reconstructed from the same distribution in the latent space. With the reconstructed latent time courses, preceding CAPs successful predicted the following transient CAP with a long short-term memory recurrent neural network. Our methods provide a new avenue to characterize the brain’s transient co-activity maps and model the complex dynamics between them in a framewise manner.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3