Abstract
AbstractTranscriptional regulation occurs via changes to the rates of various biochemical processes. Sequencing-based approaches that average together many cells have suggested that polymerase binding and polymerase release from promoter-proximal pausing are two key regulated steps in the transcriptional process. However, single cell studies have revealed that transcription occurs in short, discontinuous bursts, suggesting that transcriptional burst initiation and termination might also be regulated steps. Here, we develop and apply a quantitative framework to connect changes in both Pol II ChIP-seq and single cell transcriptional measurements to changes in the rates of specific steps of transcription. Using a number of global and targeted transcriptional regulatory perturbations, we show that burst initiation rate is indeed a key regulated step, demonstrating that transcriptional activity can be frequency modulated. Polymerase pause release is a second key regulated step, but the rate of polymerase binding is not changed by any of the biological perturbations we examined. Our results establish an important role for transcriptional burst regulation in the control of gene expression.
Publisher
Cold Spring Harbor Laboratory
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献