Macrophage migration inhibitory factor of Syrian golden hamster has similar structure and function as human MIF and promotes pancreatic tumor growth

Author:

Dash Pujarini,Sundaram Rajivgandhi,Suresh Voddu,Sabat Surendra Chandra,Mohapatra Debasish,Mohanty Sneha,Vasudevan Dileep,Senapati Shantibhusan

Abstract

AbstractMacrophage migration inhibitory factor (MIF) is a pleiotropic cytokine that increasingly is being studied in cancers and inflammatory diseases. Though murine models have been instrumental in understanding the functional role of MIF in different pathological conditions, the information obtained from these models is biased towards a specific species. In experimental science, results obtained from multiple clinically relevant animal models always provide convincing data that might recapitulate in humans. Syrian golden hamster (Mesocricetus auratus), is a clinically relevant animal model for multiple human diseases. Hence, the major objectives of this study were to characterize structure and function of hamster MIF, and finally evaluate its effect on pancreatic tumor growthin vivo. Initially, the recombinant hamster MIF (rha-MIF) was cloned, expressed and purified in bacterial expression system. The rha-MIF primary sequence, biochemical properties and crystal structure analysis showed a greater similarity with human MIF. The crystal structure of hamster MIF illustrates that it forms a homotrimer as known in human and mouse. However, hamster MIF exhibits some minor structural variations when compared to human and mouse MIF. Thein vitrofunctional studies show that rha-MIF has tautomerase activity and enhances activation and migration of hamster peripheral blood mononuclear cells (PBMCs). Interestingly, injection of rha-MIF into HapT1 pancreatic tumor bearing hamsters significantly enhanced the tumor growth and tumor associated angiogenesis. Together, the current study shows a structural and functional similarity between hamster and human MIF. Moreover, it has demonstrated that a high-level of circulating MIF originating from non-tumor cells might also promote pancreatic tumor growthin vivo.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3