Analysis of genomic loci harboring 59,732 human-specific regulatory sequences reveals unique to human regulatory patterns associated with brain development

Author:

Glinsky Gennadi V.

Abstract

AbstractExtensive searches for genomic regions harboring various types of candidate human-specific regulatory sequences (HSRS) identified thousands’ HSRS using high-resolution next-generation sequencing technologies and methodologically diverse comparative analyses of human and non-human primates’ reference genomes. Here, a comprehensive catalogue of 59,732 genomic loci harboring candidate HSRS has been assembled to facilitate the systematic analyses of genomic sequences that were either inherited from extinct common ancestors (ECAs) or created de novo in human genomes. Present analyses identified thousands of HSRS that appear inherited from ECAs yet absent in genomes of our closest evolutionary relatives, Chimpanzee and Bonobo, presumably due to the incomplete lineage sorting and/or species-specific loss or regulatory DNA. This pattern is particularly prominent for HSRS that have been putatively associated with human-specific (HS) gene expression changes in cerebral organoid models. Significant fractions of retrotransposon-derived loci transcriptionally-active in human dorsolateral prefrontal cortex (DLPFC) are highly conserved in genomes of Gorilla, Orangutan, Gibbon, and Rhesus (1,688; 1,371; 1,148; and 1,045 loci, respectively), yet they are absent in genomes of both Chimpanzee and Bonobo. A prominent majority of regions harboring HS mutations associated with HS expression changes during brain development is highly conserved in Chimpanzee, Bonobo, and Gorilla genomes. Among non-human primates (NHP), dominant fractions of HSRS associated with HS gene expression in both excitatory neurons (347 loci; 67%) and radial glia (683 loci; 72%) are highly conserved in the Gorilla genome. Analysis of 4,433 genes encoding virus-interacting proteins (VIPs) revealed that 95.9% of human VIPs are components of HS regulatory networks that appear to operate in distinct types of human cells from preimplantation embryos to adult DLPFC. Present analyses demonstrate that Modern Humans captured unique combinations of regulatory sequences, divergent subsets of which are highly conserved in distinct species of six NHP separated by 30 million years of evolution. Concurrently, this unique-to-human mosaic of genomic regulatory patterns inherited from ECAs was supplemented with 12,486 created de novo HSRS. Present analyses of HSRS support the model of complex continuous speciation process during evolution of the human lineage that is not likely to occur as an instantaneous event. Genes encoding VIPs may represent a principal genomic target of HS regulatory networks, thus affecting a functionally diverse spectrum of biological processes controlled by VIP-containing liquid-liquid phase separated condensates.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3