Flexible regions in the molecular architecture of Human fibrin clots structurally resolved by XL-MS and integrative structural modeling

Author:

Klykov OlegORCID,van der Zwaan Carmen,Heck Albert J.R.ORCID,Meijer Alexander B.,Scheltema Richard A.ORCID

Abstract

AbstractUpon activation, fibrinogen forms large fibrin biopolymers that coalesce into clots that assist in wound healing. Limited insights into their molecular architecture, due to the sheer size and insoluble character of fibrin clots, have however restricted our ability to develop novel treatments for clotting diseases. The so far resolved disparate structural details did provide insights into linear elongation; however, molecular details like the C-terminal domain of theα-chain, the heparin-binding domain on theβ-chain, and others involved in lateral aggregation are lacking. To illuminate these dark areas, we applied crosslinking mass spectrometry (XL-MS) to obtain biochemical evidence in the form of over 300 distance constraints and combined this with structural modeling. These restraints additionally define the interaction network of the clots and e.g. provide molecular details for the interaction with Human Serum Albumin (HSA). We were able to construct the models of fibrinogenα(excluding two highly flexible regions) andβ, confirm these models with known structural arrangements and map how the structure laterally aggregates to form intricate lattices together with fibrinogenγ. We validate the final model by mapping mutations leading to impaired clot formation. From a list of 22 mutations, we uncovered structural features for all, including a crucial role forβArg’196 in lateral aggregation. The resulting model will be invaluable for research on dysfibrinogenemia and amyloidosis, as it provides insights into the molecular mechanisms of thrombosis and bleeding disorders related to fibrinogen variants. The structure is provided in the PDB-DEV repository.

Publisher

Cold Spring Harbor Laboratory

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3