The evolutionary traceability of proteins

Author:

Jain Arpit,von Haeseler Arndt,Ebersberger Ingo

Abstract

AbstractOrthologs document the evolution of genes and metabolic capacities encoded in extant and ancient genomes. Orthologous genes that are detected across the full diversity of contemporary life allow reconstructing the gene set of LUCA, the last universal common ancestor. These genes presumably represent the functional repertoire common to – and necessary for – all living organisms. Design of artificial life has the potential to test this. Recently, a minimal gene (MG) set for a self-replicating cell was determined experimentally, and a surprisingly high number of genes have unknown functions and are not represented in LUCA. However, as similarity between orthologs decays with time, it becomes insufficient to infer common ancestry, leaving ancient gene set reconstructions incomplete and distorted to an unknown extent. Here we introduce the evolutionary traceability, together with the software protTrace, that quantifies, for each protein, the evolutionary distance beyond which the sensitivity of the ortholog search becomes limiting. We show that the LUCA set comprises only high-traceable proteins most of which have catalytic functions. We further show that proteins in the MG set lacking orthologs outside bacteria mostly have low traceability, leaving open whether their eukaryotic orthologs have just been overlooked. On the example of REC8, a protein essential for chromosome cohesion, we demonstrate how a traceability-informed adjustment of the search sensitivity identifies hitherto missed orthologs in the fast-evolving microsporidia. Taken together, the evolutionary traceability helps to differentiate between true absence and non-detection of orthologs, and thus improves our understanding about the evolutionary conservation of functional protein networks.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3