Combining weather patterns and cycles of population susceptibility to forecast dengue fever epidemic years in Brazil: a dynamic, ensemble learning approach

Author:

McGough Sarah F.,Clemente Cesar L.,Kutz J. Nathan,Santillana Mauricio

Abstract

AbstractTransmission of dengue fever depends on a complex interplay of human, climate, and mosquito dynamics, which often change in time and space. It is well known that disease dynamics are highly influenced by a population’s susceptibility to infection and microclimates, small-area climatic conditions which create environments favorable for the breeding and survival of the mosquito vector. Here, we present a novel machine learning dengue forecasting approach, which, dynamically in time and adaptively in space, identifies local patterns in weather and population susceptibility to make epidemic predictions at the city-level in Brazil, months ahead of the occurrence of disease outbreaks. Weather-based predictions are improved when information on population susceptibility is incorporated, indicating that immunity is an important predictor neglected by most dengue forecast models. Given the generalizability of our methodology, it may prove valuable for public-health decision making aimed at mitigating the effects of seasonal dengue outbreaks in locations globally.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3