A role for the P2Y1 receptor in nonsynaptic cross-depolarization in the rat dorsal root ganglia

Author:

Carvalho Gil B.,Mulpuri Yatendra,Damasio Antonio,Spigelman Igor

Abstract

AbstractNon-synaptic transmission is pervasive throughout the nervous system. It appears especially prevalent in peripheral ganglia, where non-synaptic interactions between neighboring cell bodies have been described in both physiological and pathological conditions, a phenomenon referred to as cross-depolarization (CD) and thought to play a role in sensory processing and chronic pain. CD has been proposed to be mediated by a chemical agent, but its identity has remained elusive. Here, we report that in the rat dorsal root ganglion (DRG), the P2Y1 purinergic receptor (P2RY1) plays an important role in regulating CD. The effect of P2RY1 is cell-type specific: pharmacological blockade of P2RY1 inhibited CD in A-type neurons while enhancing it in unmyelinated C-type cells. In the nodose ganglion of the vagus, CD requires extracellular calcium in a large percentage of cells. In contrast, we show that in the DRG extracellular calcium appears to play no major role, pointing to a mechanistic difference between the two peripheral ganglia. Furthermore, we show that DRG glial cells also play a cell-type specific role in CD regulation. Fluorocitrate-induced glial inactivation had no effect on A-cells but enhanced CD in C-cells. These findings shed light on the mechanism of CD in the DRG and pave the way for further analysis of non-synaptic neuronal communication in sensory ganglia.HighlightsThe purinergic receptor P2RY1 plays a regulatory role in non-synaptic crossdepolarization (CD) in the mammalian DRGThe effect of P2RY1 is cell type-specific: it enhances CD in myelinated A-type neurons, but inhibits it in unmyelinated C-cellsCD in the DRG does not require extracellular calcium. This is in contrast with the nodose ganglion, where extracellular calcium plays an important role in nonsynaptic interactionsCD is also modulated by DRG glial cells. Glia selectively inhibit CD in C-type neurons

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3