An integrative analysis of GWAS and intermediate molecular trait data reveals common molecular mechanisms supporting genetic similarity between seemingly unrelated complex traits

Author:

Gu Jialiang,Fuller Chris,Zheng JiashunORCID,Li Hao

Abstract

AbstractThe rapid accumulation of Genome Wide Association Studies (GWAS) and association studies of intermediate molecular traits provides new opportunities for comparative analysis of the genetic basis of complex human phenotypes. Using a newly developed statistical framework called Sherlock-II that integrates GWAS with eQTL (expression Quantitative Trait Loci) and metabolite-QTL data, we systematically analyzed 445 GWAS datasets, and identified 1371 significant gene-phenotype associations and 308 metabolites-phenotype associations (passing a Q value cutoff of 1/3). This integrative analysis allows us to translate SNP-phenotype associations into functionally informative gene-phenotype association profiles. Genetic similarity analyses based on these profiles clustered phenotypes into sub-trees that reveal both expected and unexpected relationships. We employed a statistical approach to delineate sets of functionally related genes that contribute to the similarity between their association profiles. This approach suggested common molecular mechanisms that connect the phenotypes in a subtree. For example, we found that fasting insulin, fasting glucose, breast cancer, prostate cancer, and lung cancer clustered into a subtree, and identified cyclic AMP/GMP signaling that connects breast cancer and insulin, NAPDH oxidase/ROS generation that connects the three cancers, and apoptosis that connects all five phenotypes. Our approach can be used to assess genetic similarity and suggest mechanistic connections between phenotypes. It has the potential to improve the diagnosis and treatment of a disease by mapping mechanistic insights from one phenotype onto others based on common molecular underpinnings.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3