GT-TS: Experimental design for maximizing cell type discovery in single-cell data

Author:

Dumitrascu Bianca,Feng Karen,Engelhardt Barbara EORCID

Abstract

We present the Good-Toulmin like estimator via Thompson sampling, a computational method for iterative experimental design in multi-tissue single-cell RNA-seq (scRNA-seq) data. Given a budget and modeling cell type information across tissues, GT-TS estimates how many cells are required for sampling from each tissue with the goal of maximizing cell type discovery across samples from multiple iterations. In both real and simulated data, we demonstrate the advantages of GT-TS in data collection planning when compared to a random strategy in the absence of experimental design.

Publisher

Cold Spring Harbor Laboratory

Reference22 articles.

1. Marc Abeille and Alessandro Lazaric . Linear Thompson Sampling Revisited. In AISTATS 2017-20th International Conference on Artificial Intelligence and Statistics, 2017.

2. Marco Battiston , Stefano Favaro , and Yee Whye Teh . Multi-armed bandit for species discovery: a bayesian nonparametric approach. Journal of the American Statistical Association, (just-accepted), 2016.

3. Accounting for technical noise in single-cell RNA-seq experiments;Nature Methods,2013

4. Optimal discovery with probabilistic expert advice: finite time analysis and macroscopic optimality;Journal of Machine Learning Research,2013

5. Andrew Butler , Paul Hoffman , Peter Smibert , Efthymia Papalexi , and Rahul Satija . Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nature Biotechnology, 2018.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3