Transition from background selection to associative overdominance promotes diversity in regions of low recombination

Author:

Gilbert Kimberly J.ORCID,Pouyet FannyORCID,Excoffier LaurentORCID,Peischl StephanORCID

Abstract

SummaryLinked selection is a major driver of genetic diversity. Selection against deleterious mutations removes linked neutral diversity (background selection, BGS, Charlesworthet al.1993), creating a positive correlation between recombination rates and genetic diversity. Purifying selection against recessive variants, however, can also lead to associative overdominance (AOD, Ohta 1971, Zhao & Charlesworth, 2016), due to an apparent heterozygote advantage at linked neutral loci that opposes the loss of neutral diversity by BGS. Zhao & Charlesworth (2016) identified the conditions when AOD should dominate over BGS in a single-locus model and suggested that the effect of AOD could become stronger if multiple linked deleterious variants co-segregate. We present a model describing how and under which conditions multi-locus dynamics can amplify the effects of AOD. We derive the conditions for a transition from BGS to AOD due to pseudo-overdominance (Ohta & Kimura 1970), i.e. a form of balancing selection that maintains complementary deleterious haplotypes that mask the effect of recessive deleterious mutations. Simulations confirm these findings and show that multi-locus AOD can increase diversity in low recombination regions much more strongly than previously appreciated. While BGS is known to drive genome-wide diversity in humans (Pouyetet al. 2018), the observation of a resurgence of genetic diversity in regions of very low recombination is indicative of AOD. We identify 21 such regions in the human genome showing clear signals of multi-locus AOD. Our results demonstrate that AOD may play an important role in the evolution of low recombination regions of many species.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3