Prediction error signaling explains neuronal mismatch responses in the medial prefrontal cortex

Author:

Casado-Román LorenaORCID,Carbajal Guillermo V.ORCID,Pérez-González DavidORCID,Malmierca Manuel S.ORCID

Abstract

AbstractThe mismatch negativity (MMN) is a key biomarker of automatic deviance detection thought to emerge from two cortical sources. First, the auditory cortex (AC) encodes spectral regularities and reports frequency-specific deviances. Then, more abstract representations in the prefrontal cortex (PFC) allow to detect contextual changes of potential behavioral relevance. However, the precise location and time asynchronies between neuronal correlates underlying this fronto-temporal network remain unclear and elusive. Our study presented auditory oddball paradigms along with ‘no-repetition’ controls to record mismatch responses in neuronal spiking activity and local field potentials at the rat medial PFC. Whereas mismatch responses in the auditory system are mainly induced by stimulus-dependent effects, we found that auditory responsiveness in the PFC was driven by unpredictability, yielding context-dependent, comparatively delayed, more robust and longer-lasting mismatch responses mostly comprised of prediction error signaling activity. This characteristically different composition discarded that mismatch responses in the PFC could be simply inherited or amplified downstream from the auditory system. Conversely, it is more plausible for the PFC to exert top-down influences on the AC, since the PFC exhibited flexible and potent predictive processing, capable of suppressing redundant input more efficiently than the AC. Remarkably, the time course of the mismatch responses we observed in the spiking activity and local field potentials of the AC and the PFC combined coincided with the time course of the large-scale MMN-like signals reported in the rat brain, thereby linking the microscopic, mesoscopic and macroscopic levels of automatic deviance detection.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3