Gradients of Rac1 nanoclusters support spatial patterns of Rac1 signaling

Author:

Remorino Amanda,Beco Simon De,Cayrac Fanny,Federico Fahima Di,Cornilleau Gaetan,Gautreau Alexis,Parrini Maria Carla,Masson Jean-Baptiste,Dahan Maxime,Coppey Mathieu

Abstract

AbstractThe dynamics of the cytoskeleton and cell shape relies on the coordinated activation of RhoGTPase molecular switches. Among them, Rac1 participates to the orchestration in space and time of actin branching and protrusion/retraction cycles of the lamellipodia at the cell front during mesenchymal migration. Biosensor imaging has revealed a graded concentration of active GTP-loaded Rac1 in protruding regions of the cell. Here, using single molecule imaging and super-resolution microscopy, we reveal an additional supramolecular organization of Rac1. We find that, similarly to H-Ras, Rac1 partitions and is immobilized into nanoclusters of 50-100 molecules each. These nanoclusters assemble due to the interaction of the polybasic tail of Rac1 with the phosphoinositide lipids PIP2 and PIP3. The additional interactions with GEFs, GAPs, downstream effectors, and possibly other partners are responsible for an enrichment of Rac1 nanoclusters in protruding regions of the cell. Using optogenetics and micropatterning tools, we find that activation of Rac1 leads to its immobilization in nanoclusters and that the local level of Rac1 activity matches the local density of nanoclusters. Altogether, our results show that subcellular patterns of Rac1 activity are supported by gradients of signaling nanodomains of heterogeneous molecular composition, which presumably act as discrete signaling platforms. This finding implies that graded distributions of nanoclusters might encode spatial information.Significance statementThe plasma membrane of eukaryotic cells is a highly organized surface where hundreds of incoming signals are transduced to the intracellular space. How cells encode faithfully this myriad of signals is a fundamental question. Here we show that Rac1, a critical membrane-bound protein involved in the regulation of cytoskeletal dynamics, forms small aggregates together with other regulating proteins. These supramolecular assemblies, called nanoclusters, are the “quantal” units of signaling. By increasing the local concentration, nanoclusters set thresholds for downstream signaling and ensure the fidelity of information transduction. We found that Rac1 nanoclusters are distributed as spatial gradients matching the patterns of Rac1 activity. We propose that cells can encode positional information through distributed signaling quanta, hereby ensuring spatial fidelity.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3