Cannabis Vapour Exposure Alters Neural Circuit Oscillatory Activity In A Neurodevelopmental Model Of Schizophrenia: Exploring The Differential Impact Of Cannabis Constituents

Author:

Jenkins Bryan W.,Buckhalter Shoshana,Perreault Melissa L.,Khokhar Jibran Y.ORCID

Abstract

AbstractCannabis use is highly prevalent in patients with schizophrenia and worsens the course of the disorder. To understand the causal impacts of cannabis on schizophrenia-related oscillatory disruptions, we herein investigated the impact of exposure to cannabis vapour (containing delta-9-tetrahydrocannabinol [THC] or balanced THC and cannabidiol [CBD]) on oscillatory activity in the neonatal ventral hippocampal lesion (NVHL) rat model of schizophrenia. Male Sprague Dawley rats underwent NVHL or sham surgeries on postnatal day 7. In adulthood, electrodes were implanted targeting the cingulate cortex (Cg), the prefrontal cortex (PFC), the dorsal hippocampus (HIP), and the nucleus accumbens (NAc). Local field potential recordings were obtained following exposure to two strains of vapourized cannabis flower (with ~10% THC or ~10% balanced THC:CBD) in a cross-over design with a two-week wash-out period between exposures. Compared to controls, NVHL rats had reduced baseline gamma power in the Cg, dHIP, and NAc, and reduced high-gamma coherence between the dHIP-Cg. THC-only vapour broadly suppressed oscillatory power and coherence, even beyond the baseline suppressions observed in NHVL rats. Balanced THC:CBD vapour appeared to ameliorate the THC-induced impacts on power and coherence in both sham and NVHL rats. For NVHL rats, THC-only vapour also normalized the baseline dHIP-Cg high-gamma coherence deficits. NHVL rats also demonstrated a 20ms delay in dHIP theta to high-gamma phase coupling, which was ameliorated by both exposures in the PFC and NAc. In conclusion, THC-only cannabis vapour suppressed oscillatory activity in NVHL and sham rats, while balanced THC:CBD vapour may ameliorate some of these effects.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3