Abstract
AbstractAlthough bottom-up attention can improve visual performance with and without awareness, whether they are governed by a common neural computation remains unclear. Using a modified Posner paradigm with backward masking, we found that both the attention-triggered cueing effect with and without awareness displayed a monotonic gradient profile (Gaussian-like). The scope of this profile, however, was significantly wider with than without awareness. Subsequently, for each subject, the stimulus size was manipulated as their respective mean scopes with and without awareness while stimulus contrast was varied in a spatial cueing task. By measuring the gain pattern of contrast-response functions, we observed changes in the cueing effect consonant with changes in contrast gain for bottom-up attention with awareness and response gain for bottom-up attention without awareness. Our findings indicate an awareness-dependent normalization framework of visual bottom-up attention, placing a necessary constraint, namely, awareness, on our understanding of the neural computations underlying visual attention.
Publisher
Cold Spring Harbor Laboratory