Abstract
AbstractGeobacter sulfurreducens utilizes extracellular electron acceptors such as Mn(IV), Fe(III), syntrophic partners, and electrodes that vary from +0.4 to −0.3 V vs. Standard Hydrogen Electrode (SHE), representing a potential energy span that should require a highly branched electron transfer chain. Here we describe CbcBA, a bc-type cytochrome essential near the thermodynamic limit of respiration when acetate is the electron donor. Mutants lacking cbcBA ceased Fe(III) reduction at −0.21 V vs. SHE, could not transfer electrons to electrodes between −0.21 and −0.28 V, and could not reduce the final 10% – 35% of Fe(III) minerals. As redox potential decreased during Fe(III) reduction, cbcBA was induced with the aid of the regulator BccR to become one of the most highly expressed genes in G. sulfurreducens. Growth yield (CFU/mM Fe(II)) was 112% of WT in ΔcbcBA, and deletion of cbcL (a different bc-cytochrome essential near −0.15 V) in ΔcbcBA increased yield to 220%. Together with ImcH, which is required at high redox potentials, CbcBA represents a third cytoplasmic membrane oxidoreductase in G. sulfurreducens. This expanding list shows how these important metal-reducing bacteria may constantly sense redox potential to adjust growth efficiency in changing environments.
Publisher
Cold Spring Harbor Laboratory
Reference85 articles.
1. Bacterial respiration;Bacteriol Rev,1977
2. Standard potentials (Eo) of iron(III) oxides under reducing conditions;J Plant Nutr Soil Sci,1987
3. Studies on redox potential of marine sediments;Am Assoc Pet Geol Bull,1946
4. The mechanism of reduction in waterlogged paddy soil;Folia Microbiol,1966