Abstract
AbstractMucus is a viscoelastic gel secreted by the pulmonary epithelium in the tracheobronchial region of the lungs. The coordinated beating of cilia in contact with the gel layer moves mucus upwards towards pharynx, removing inhaled pathogens and particles from the airways. The efficacy of this clearance mechanism depends primarily on the rheological properties of mucus. Here we use a magnetic wire based microrheology technique to study the viscoelastic properties of human mucus collected from human bronchus tubes. The response of wires between 5 and 80 µm in length to a magnetic rotating field is monitored by optical time-lapse microscopy and analyzed using constitutive equation models of rheology, including Maxwell and Kelvin-Voigt. The static shear viscosity and elastic modulus can be inferred from low frequency (10−3 − 10 rad s−1) measurements, leading to the evaluation of the mucin network relaxation time. This relaxation time is found to be widely distributed, from one to several hundred seconds. Mucus is identified as a viscoelastic liquid with an elastic modulus of 2.5 ± 0.5 Pa and a static viscosity of 100 ± 40 Pa s. Our work shows that beyond the established spatial variations in rheological properties due to microcavities, mucus exhibits secondary inhomogeneities associated with the relaxation time of the mucin network that may be important for its flow properties.
Publisher
Cold Spring Harbor Laboratory
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献