Synapse development is regulated by microglial THIK-1 K+ channels

Author:

Izquierdo PabloORCID,Shiina HirokoORCID,Hirunpattarasilp ChanaweeORCID,Sethi Huma,Attwell DavidORCID

Abstract

ABSTRACTMicroglia are the resident immune cells of the central nervous system. They constantly survey the brain parenchyma for redundant synapses, debris or dying cells, which they remove through phagocytosis. Microglial ramification, motility and cytokine release are regulated by tonically active THIK-1 K+ channels on the microglial plasma membrane. Here, we examined whether these channels play a role in phagocytosis. Using pharmacological blockers and THIK-1 knockout (KO) mice, we found that lack of THIK-1 activity reduced microglial phagocytosis, which may result in impaired pruning of synapses. In hippocampus, mice lacking THIK-1 expression had an increased number of glutamatergic synapses during development. This resulted from an increased number of presynaptic terminals, due to impaired removal by THIK-1 KO microglia. In microglia in brain slices from fresh human biopsies, modulating THIK-1 function had effects similar to those in rodents: blocking THIK-1 rapidly reduced microglial process ramification and increased synaptic density. The dependence of synapse number on THIK-1 K+ channels, which control microglial surveillance and phagocytic ability, implies that changes in THIK-1 expression level over the lifespan or in disease states may contribute to altering neural circuit function.SignificanceMicroglia are the brain’s resident immune cells, surveying it with motile processes, which can remove pathogens but also prune unnecessary junctions between the neurons (synapses). A potassium channel, THIK-1, in the microglial membrane allows efflux of potassium from these cells, and thereby regulates their membrane voltage as well as their process motility and release of inflammatory mediators. Here, using THIK-1-blocking drugs and THIK-1-deficient mice, we demonstrate that THIK-1 controls removal of synaptic material by microglia, which reduces the number of functional synapses. We also show that blocking THIK-1, as some anaesthetics do, affects microglial structure and increases the number of synapses in living brain slices from both rodents and humans, and could thus alter network function in the brain.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3