Local density determines nuclear movements during syncytial blastoderm formation in a cricket

Author:

Donoughe SethORCID,Hoffmann Jordan,Nakamura TaroORCID,Rycroft Chris H.ORCID,Extavour Cassandra G.ORCID

Abstract

AbstractAnimal embryos pass through an early stage called the blastoderm, in which cells are arranged in a continuous layer at the periphery of the embryo. Despite the broad evolutionary conservation of this embryonic stage, the cellular behaviours that lead to blastoderm formation vary across animals, and the mechanisms that regulate these behaviours are poorly understood. In most insects, pre-blastoderm development begins as a syncytium: that is, many nuclei divide and move throughout the single shared cytoplasm of the embryo. Then these syncytial nuclei must move from their scattered positions within the cytoplasm to form a single layer at the cortex. Recent work showed that in the fruit fly Drosophila melanogaster, some of these early nuclear movements are caused by pulses of cytoplasmic flows that are coupled to synchronous divisions. Here, we show that the cricket Gryllus bimaculatus has an altogether different solution to the problem. We quantified nuclear dynamics during the period of syncytial cleavages and movements that lead to blastoderm formation in G. bimaculatus embryos with transgenically labeled nuclei. We found that: (1) cytoplasmic flows were unimportant for nuclear movement, and (2) division cycles, nuclear speeds, and the directions of nuclear movement were not synchronized across the embryo as in D. melanogaster, but instead were heterogeneous in space and time. Moreover, several aspects of nuclear divisions and movements were correlated with local nuclear density. We show that previously proposed models for the movement of D. melanogaster syncytial nuclei cannot explain the behaviours of G. bimaculatus syncytial nuclei. We introduce a novel geometric model based on asymmetric local pulling forces on nuclei, which recapitulates the density-dependent nuclear speeds and orientations of unperturbed G. bimaculatus embryos, without invoking the common paradigms of localized polarity cues or cell lineage as determinants of nuclear activity. Our model also accurately predicts nuclear behavior in embryos physically manipulated to contain regions of atypical nuclear densities. We show that this model can be used to generate falsifiable predictions about the dynamics of blastoderm formation in other insect species.

Publisher

Cold Spring Harbor Laboratory

Reference75 articles.

1. Mechanisms of nuclear positioning;Journal of Cell Science,1998

2. Nuclear Migration

3. Nuclear movement in filamentous fungi

4. Nuclear positioning in skeletal muscle;Seminars in Cell & Developmental Biology,2018

5. Nucleus positioning within Drosophila egg chamber;Seminars in Cell & Developmental Biology,2018

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Nuclear positioning during development: Pushing, pulling and flowing;Seminars in Cell & Developmental Biology;2021-12

2. Cell cycle control during early embryogenesis;Development;2021-06-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3